Ícone do site Postgrain

Deep Learning nas Redes Sociais: Saiba tudo! [2024]

Deep Learning nas Redes Sociais

O Deep Learning para as redes sociais promete ser revolucionário em cada plataforma.

Portanto, nosso conteúdo é fundamental para você acompanhar essa nova tendência de um futuro não tão distante.

Deep Learning nas Redes Sociais: O que é?

Deep learning é um campo da inteligência artificial que, como você sabe, está sendo altamente debatido nos últimos anos com a chegada do ChatGPT, Sora (API) e muitas outras. 

Em português, o termo significa aprendizado profundo ou aprendendo profundamente e isso revela muito desse campo da IA.

Deep Learning nas Redes Sociais: Entenda de forma simples

Pense no Deep Learning como uma pessoa que está estudando um tema desde que nasceu, o português, por exemplo. 

Nós, brasileiros, estamos estudando o português todos os dias desde que nascemos, e com isso identificamos padrões na língua, cultura e muitos outros aspectos com facilidade. Tudo isso com dados brutos do mundo real.

A grande diferença é que a inteligência artificial não precisa levar décadas para identificar esses padrões nas informações, mesmo com milhares de dados complexos. 

Nesse campo, existem as redes neurais profundas que funcionam como neurônios para a IA e, com isso, ela identifica padrões de dados brutos, ou seja, informações que não necessariamente tinham uma conexão entre elas. 

Dessa forma, não se torna necessário nenhum trabalho manual para entender o padrão. 

Padrões são a base do conhecimento humano, um exemplo simples, mas que confirma isso é a nossa capacidade de enxergar rostos com olhos e boca em objetos inanimados.

Deep Learning nas Redes Sociais: Por que é importante?

A habilidade de reconhecer padrões foi o que nos deu a matemática, astronomia, capacidade de guardar nosso conhecimento e prever catástrofes e tendências. 

Agora, imagine colocar todas essas informações em uma inteligência artificial?

Vamos ter uma verdadeira revolução e, agora, vamos mostrar como vai funcionar para a análise de sentimentos nas redes sociais.

Clique aqui e veja nosso conteúdo sobre o futuro da inteligência artificial, o que será da humanidade?

Deep Learning nas Redes Sociais: Como Funciona a Análise de Sentimentos?

As redes sociais hoje são uma extensão de nossas vidas sociais, não é verdade?

Um elemento fundamental nas relações humanas é justamente o sentimento. Nós nos relacionamos com quem nos faz bem em alguma medida. 

Dessa forma, analisar os sentimentos com Deep Learning parece o próximo passo para revolucionar essas plataformas.

Afinal, as redes sociais terão uma grande vantagem em seus objetivos.

Deep Learning nas Redes Sociais: Como a análise de sentimentos pode ser usada?

A análise de sentimentos pode ser utilizada para diversos objetivos, mas para mencionar apenas os principais, incluiria, certamente, o objetivo de manter o usuário mais tempo nas redes sociais e impulsionar vendas.

As plataformas podem empregar o Deep Learning para compreender o estado emocional do usuário com base em suas interações nas redes sociais, incluindo o conteúdo de suas mensagens.

Assim, a plataforma pode recomendar conteúdos que proporcionem uma experiência positiva ao usuário, mesmo que a definição de “se sentir bem” possa ser bastante complexa. 

Por exemplo, enquanto alguns usuários podem se sentir bem com a derrota de seus adversários em seu esporte favorito, outros podem encontrar felicidade em assistir a pequenos animais sendo salvos.

Um mini site completo e cabe no seu bolso. Crie agora!

Dessa forma, por meio do Deep Learning, o algoritmo pode classificar os usuários em grupos para oferecer conteúdos que correspondam ao seu estado emocional, conforme refletido por suas interações.

No contexto das vendas, o sentimento do usuário é um dos indicadores mais poderosos para a tomada de decisão de compra. Por exemplo, tendemos a comprar mais no supermercado quando estamos com fome. 

Embora a fome em si não seja um sentimento, a beleza do Deep Learning reside na capacidade da IA de reconhecer que, o estado emocional do usuário, influencia nas suas decisões de compra, independentemente do motivo específico desse sentimento.

Deep Learning nas Redes Sociais: Como funciona a análise de sentimentos?

Antigamente, a análise de sentimentos era feita por um modelo estatístico. Por exemplo, a maioria das pessoas ao ver um cachorro filhote fica feliz. Parece funcionar, não é verdade?

Entretanto, esse é apenas um dos muitos grupos. Pessoas podem ter o mesmo efeito com gatos, filhotes, bebês, comida hiper palatável, mensagens de afeto, e assim por diante.

Com o Deep Learning, as plataformas podem classificar várias pessoas em diferentes grupos e criar segmentações distintas com base nisso. 

Como mencionamos anteriormente, o aprendizado por meio de dados brutos carrega uma vasta gama de informações.

Dessa forma, é possível compreender nuances, semântica, contextos, linhas de raciocínio e muitos outros detalhes que podem parecer simples à primeira vista, mas são fundamentais para garantir ao usuário uma experiência surpreendente.

Deep Learning nas Redes Sociais: Limitações naturais que sempre vão existir

A IA é surpreendente, mas como toda tecnologia, inevitavelmente, vai esbarrar em limitações naturais que sempre vão existir.

Com isso em mente, tudo que estamos falando aqui possui uma margem de erro porque:

Precisamos lembrar que nenhuma máquina é infalível e, por todos os motivos que falamos acima, é bastante difícil garantir que a análise de sentimentos será perfeita. 

Isso é importante não só para entender a tecnologia, mas também para evitar ter expectativas diferentes da realidade.

Toda revolução tecnológica tende a criar uma grande comoção, mas precisamos entender o assunto de forma clara.

Veja nosso conteúdo sobre a ética da inteligência artificial, os 3 problemas gerados por IA

Deep Learning nas Redes Sociais: Vantagens das Plataformas usarem

O Deep Learning na análise traz diversas vantagens para as marcas, criadores de conteúdo, usuários e, claro, as plataformas. As principais vantagens são:

Gostou do conteúdo sobre IA?

Continue acompanhando nosso blog clicando aqui para conferir muito mais!

Sair da versão mobile